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Abstract 
 

Human Action Recognition (HAR) is a pivotal task in computer vision, with applications in surveillance, 
healthcare, robotics and human-computer interaction. This study presents a novel framework for HAR using the 
YOLOv11 model by Ultralytics, a state-of-the-art object detection architecture optimized for real-time 
performance. We trained and evaluated the model on a custom dataset comprising 18 distinct human actions, 
captured in indoor environments using fisheye cameras. The actions range from everyday activities (e.g., walking, 
sitting) to specialized tasks (e.g., patient on stretcher, patient on wheelchair). Our results show that YOLOv11 
achieves a mean Average Precision (mAP@0.5) of 0.401, with exceptional performance on actions like cleaning 
(mAP@0.5: 0.760), searching (mAP@0.5: 0.695) and patient on wheelchair (mAP@0.5: 0.995). We provide an in-
depth analysis of the model’s training metrics, bounding box distributions, precision-recall curves, F1-confidence 
curves, recall-confidence curves and confusion matrices. Additionally, we present extensive qualitative results to 
demonstrate the model’s robustness in real-world scenarios. A comparison with existing methods, such as two-
stream CNNs and Transformer-based models, highlights YOLOv11’s superior balance of accuracy and speed, 
making it a promising solution for real-time HAR applications. This study also discusses the model’s limitations 
and outlines directions for future research, paving the way for enhanced action recognition systems. 
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Introduction 
 

Human Action Recognition (HAR) is a critical task in 
computer vision, enabling machines to understand and 
interpret human behaviors in various contexts. HAR has 
wide-ranging applications, including security surveillance 
(e.g., detecting suspicious activities in public spaces), 
healthcare (e.g., monitoring patient activities in hospitals), 
robotics (e.g., enabling human-robot interaction) and 
entertainment (e.g., gesture-based gaming). The ability to 
accurately classify human actions in real-time is essential 
for these applications, requiring robust models that can 
handle complex scenes, varying lighting conditions and 
diverse action types. 
 

Traditional HAR methods often relied on handcrafted 
features, such as Histogram of Oriented Gradients (HOG) 
and Scale-Invariant Feature Transform (SIFT), combined 
with classifiers like Support Vector Machines (SVMs) [1,2]. 
These approaches, while effective in controlled settings, 
struggled with dynamic environments due to their reliance 
on manual feature engineering and limited generalization 
capabilities. The advent of deep learning has transformed 
HAR, with Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) enabling end-to-end 
learning of spatial and temporal features directly from raw 
data [3,4]. 

 

Among deep learning approaches, the YOLO (You Only 
Look Once) family of models has emerged as a powerful 
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framework for object detection and more recently, action 
recognition [5-7]. YOLO models are known for their single-
stage detection pipeline, which balances accuracy and 
speed, making them ideal for real-time applications. The 
latest YOLOv11 model by Ultralytics introduces several 
improvements, including a more efficient backbone, 
enhanced feature aggregation and advanced data 
augmentation techniques, further boosting its 
performance. 

 

In this study, we propose a YOLOv11-based framework 
for HAR, focusing on its ability to recognize a diverse set of 
human actions in indoor settings. We collected a custom 
dataset comprising 18 action classes, including everyday 
activities like walking and sitting, as well as specialized 
tasks like patient care in hospitals. Our evaluation includes 
a comprehensive analysis of training metrics, bounding 
box distributions, precision-recall curves and confusion 
matrices, providing a detailed understanding of the 
model’s performance. We also present extensive 
qualitative results to demonstrate the model’s robustness 
in real-world scenarios and compare YOLOv11 with other 
state-of-the-art methods to highlight its advantages. 

 

The contributions of this paper are as follows: 

➢ Development of a YOLOv11-based framework for 
human action recognition, leveraging its real-time 
capabilities. 

➢ Comprehensive evaluation of the model on a custom 
dataset with 18 action classes, achieving an mAP@0.5 
of 0.401. 

➢ Detailed analysis of training metrics, bounding box 
distributions, precision-recall curves, F1-confidence 
curves, recall-confidence curves and confusion 
matrices. 

➢ Extensive qualitative results demonstrating the 
model’s performance in diverse indoor scenarios. 

➢ Comparison with existing HAR methods, such as two-
stream CNNs and Transformers, to showcase 
YOLOv11’s superiority in accuracy and speed. 

➢ Insights into the model’s limitations and potential 
directions for future research. 
 

The rest of the paper is organized as follows: Section II 
reviews related work in HAR. Section III describes the 
dataset, model architecture and training pipeline. Section 
IV presents the results and discussion, including training 
metrics, class wise performance, bounding box analysis, 
qualitative results and comparisons. Section V concludes 
the paper and outlines future work. 

 

Related Work 
 

Human action recognition has been a topic of extensive 
research in computer vision for decades. Early approaches 
relied on handcrafted features to capture spatial and 
temporal information from video sequences. For example, 
Dalal and Triggs introduced the Histogram of Oriented 

Gradients (HOG) for human detection, which was later 
adapted for action recognition by combining it with motion 
features like optical flow [1]. Similarly, Lowe proposed the 
Scale-Invariant Feature Transform (SIFT) for extracting 
key points, which were used with classifiers like Support 
Vector Machines (SVMs) to recognize actions [2]. These 
methods, while effective in controlled settings, struggled 
with complex scenes due to their reliance on manual 
feature engineering and limited robustness to variations in 
lighting, occlusion and viewpoint. 

 

The introduction of deep learning marked a significant 
shift in HAR research. Convolutional Neural Networks 
(CNNs) enabled the automatic extraction of spatial 
features from images, eliminating the need for handcrafted 
features [3]. Simonyan and Zisserman proposed a two-
stream CNN architecture that processes spatial (RGB 
frames) and temporal (optical flow) information 
separately, achieving state-of-the-art performance on 
benchmark datasets like UCF101 and HMDB51 [8-10]. 
However, two-stream networks are computationally 
expensive, as they require separate processing of RGB and 
optical flow streams, making them less suitable for real 
time applications. 

 

Recurrent Neural Networks (RNNs) and their variants, 
such as Long Short-Term Memory (LSTM) networks, were 
also widely used for temporal modeling in HAR [4,11]. 
Donahue et al. proposed the Long-term Recurrent 
Convolutional Network (LRCN), which combines CNNs for 
spatial feature extraction with LSTMs for temporal 
sequence modeling [12]. While effective, these approaches 
often suffer from vanishing gradient problems and high 
computational costs, limiting their applicability in real-
time scenarios. 

 

The YOLO family of models has emerged as a powerful 
alternative for action recognition, particularly in real time 
applications [5-7]. YOLO models use a single-stage 
detection pipeline that predicts bounding boxes and class 
probabilities in a single forward pass, achieving a balance 
between accuracy and speed. Early versions like YOLOv3 
were adapted for HAR by incorporating temporal 
information or pose estimation [6,13]. YOLOv5 and 
YOLOv7 further improved performance with better 
feature extraction and faster inference [7]. 

 

The latest YOLOv11 model by Ultralytics introduces 
enhancements such as a more efficient Feature Pyramid 
Network (FPN), improved anchor-free detection and 
advanced data augmentation techniques, making it well-
suited for HAR tasks. 

 

Recent advancements have also explored Transformer-
based models for HAR. Dosovitskiy et al. introduced the 
Vision Transformer (ViT), which applies self-attention 
mechanisms to image patches for feature extraction [14]. 
Liu proposed the Swin transformer, which uses a 
hierarchical architecture to capture multi-scale features, 
achieving state-of-the-art performance on action 
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recognition datasets [15]. However, Transformer models 
are computationally intensive, requiring significant 
resources for training and inference, which limits their use 
in real-time applications compared to YOLOv11. 

 

Our work builds on the strengths of YOLOv11, adapting 
it for HAR in indoor environments. Unlike previous studies, 
we focus on a diverse set of actions, including both 
everyday activities and specialized tasks relevant to 
healthcare and surveillance. We also provide a 
comprehensive evaluation of the model’s performance, 
including training metrics, bounding box analysis and 
qualitative results, to offer a holistic understanding of its 
capabilities. 

 

Methodology 
 

Dataset 
 

We collected a custom dataset for human action 
recognition, comprising video footage from indoor 
environments such as offices, hospitals and public spaces. 
The footage was captured using fisheye cameras with a 
resolution of 1280×720 pixels, providing a wide-angle 
view of the scenes. The dataset includes 18 distinct action 
A. classes, reflecting a mix of everyday activities and 
specialized tasks: 
 

➢ Everyday activities: Walking, sitting, sitting on desk, 
standing, eating, talking, using phone, sleeping. 

➢ Specialized tasks: Patient on stretcher, patient on 
wheelchair, stretcher attendant, wheelchair attendant, 
checking bag, holding walkie talkie, keeping walkie 
talkie charging. 

➢ Maintenance activities: Cleaning, mopping, loitering. 

➢ Miscellaneous: Triple intersection, working, battery 
low, searching, background. 
 

Each action class was manually annotated with 
bounding boxes and labels using a custom annotation tool. 
The dataset contains over 10,000 frames, split into 80% for 
training (8,000 frames), 10% for validation (1,000 frames) 
and 10% for testing (1,000 frames). 

  

 
 

Figure 1: YOLOv11 architecture for human action 
recognition. 

 

The distribution of actions is imbalanced, with classes 
like standing and walking having significantly more 
samples (2385 and 1131 instances, respectively) 
compared to underrepresented classes like checking bag 
and stretcher attendant (0 instances correctly predicted). 
To address this imbalance, we applied data augmentation 
techniques, including random rotations, flips and 
brightness adjustments, to increase the diversity of the 
training data. 

 

Model architecture 
 

YOLOv11 is an advanced object detection model 
developed by Ultralytics, building on the strengths of its 
predecessors (YOLOv5, YOLOv7). It uses a single-stage 
detection pipeline that predicts bounding boxes and class 
probabilities in a single forward pass, making it highly 
efficient for real-time applications. The architecture 
consists of three main components: 

➢ Backbone: A Convolutional Neural Network (CNN) 
that extracts features from the input image. YOLOv11 
uses a modified CSPDarkNet backbone, which 
incorporates Cross Stage Partial (CSP) connections to 
improve gradient flow and reduce computational 
complexity. 

➢ Neck: A feature aggregation module that combines 
features from different layers of the backbone. 
YOLOv11 employs a Feature Pyramid Network (FPN) 
with Path Aggregation Network (PAN) to capture multi-
scale features, enhancing the detection of objects at 
various sizes. 

➢ Head: A detection head that predicts bounding boxes, 
objectless scores and class probabilities. YOLOv11 uses 
an anchor-free approach, predicting the center, width 
and height of bounding boxes directly, which improves 
detection accuracy for small objects. 

 

For HAR, we modified the YOLOv11 model to predict 18 
action classes plus a background class, resulting in 19 
output classes. The input images were resized to 640x640 
pixels to balance computational efficiency and detection 
accuracy. The model was pre-trained on the COCO dataset 
and finetuned on our custom dataset to adapt to the 
specific action classes. Figure 1 illustrates the YOLOv11 
architecture for HAR [16]. 
 

Training pipeline 
 

The model was trained using the Ultralytics YOLOv11 
framework, implemented in PyTorch. The training pipeline 
is summarized in Algorithm 1. 
 

Algorithm 1 YOLOv11 training pipeline for HAR. 

▪ Input: Training dataset Dtrain, validation dataset Dval, 
number of epochs E, batch size B, learning rate η 

▪ Output: Trained YOLOv11 model 

▪ Initialize YOLOv11 model with pre-trained weights 
from COCO dataset 
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▪ Set hyperparameters: B=16, η =0.01, E=200 

▪ Apply data augmentation: Random flips, rotations, 
brightness adjustments 

▪ for epoch=1 to E do 

▪ Shuffle Dtrain and create mini-batches of size B for each 
batch in Dtrain do 

▪ Forward pass: Compute predictions (bounding boxes, 
class probabilities) 

▪ Compute loss: L=Lbox+Lcls+Ldfl 

▪ Backward pass: Update model weights using Adam 
optimizer with learning rate η 

▪ end for 

▪ Evaluate model on Dval 

▪ Compute validation metrics: box loss, classification 
loss, DFL loss, mAP@0.5, mAP@0.5:0.95 

▪ if validation mAP@0.5 does not improve for 10 epochs 
then 

▪ Early stopping: Break 

▪ end if 

▪ end for 

▪ Return: Trained model. 
 

The model was trained for 200 epochs on an NVIDIA 
RTX 3090 GPU with 24 GB of VRAM. We used the Adam 
optimizer with a learning rate of 0.01 and a batch size of 
16. The loss function consists of three components: 

➢ Box Loss (Lbox): Measures the localization error 
between predicted and ground-truth bounding boxes 
using Generalized Intersection over Union (GIoU) loss. 

➢ Classification Loss (Lcls): Measures the error in class 
predictions using binary cross-entropy loss. 

➢ Distribution Focal Loss (Ldfl): A novel loss 
introduced in YOLOv11 to improve the regression of 
bounding box coordinates by modeling the distribution 
of box predictions. 

 

The total loss is a weighted sum of these components: 
 

L=Lbox+Lcls+Ldfl. We applied early stopping to prevent 
overfitting, halting training if the validation mAP@0.5 did 
not improve for 10 consecutive epochs. 

 

Evaluation metrics 
 

We evaluated the model using a comprehensive set of 
metrics to assess its performance across different 
dimensions: 

➢ Mean Average Precision (mAP): Calculated at IoU 
thresholds of 0.5 (mAP@0.5) and 0.5:0.95 
(mAP@0.5:0.95). mAP@0.5 measures the model’s 
performance at a single IoU threshold, while 
mAP@0.5:0.95 averages the mAP across multiple IoU 
thresholds, providing a more robust evaluation. 

➢ Precision and recall: Assessed across different 

confidence thresholds to generate precision-recall 
curves. Precision measures the proportion of correct 
positive predictions, while recall measures the 
proportion of positive instances correctly detected. 

➢ F1-score: The harmonic mean of precision and recall, 
providing a single metric to balance the trade-off 
between the two. 

➢ Confusion matrix: A matrix showing the predicted vs. 
true labels for each class, used to analyze the model’s 
ability to distinguish between action classes. 

➢ Bounding box dimensions: The distribution of 
detected bounding boxes in terms of width and height, 
providing insights into the model’s detection 
capabilities for objects of different sizes. 
 

Results and Discussion 
 

Training results 
 
The training process was monitored over 200 epochs, 

with detailed metrics recorded for both training and 
validation phases. Figure 2 illustrates the progression of 
losses and performance metrics. 

 
 

 
 

Figure 2: A: Training box loss, classification loss and 
DFL loss; B: Validation box loss, classification loss and 
DFL loss; C: Precision, recall, mAP@0.5 and 
mAP@0.5:0.95 over 200 epochs. 

 
 

Training losses (Figure 2a): 
 

➢ Box loss: Decreased from 2.0 to 1.2, reflecting 
improved bounding box localization. 

➢ Classification loss: Dropped from 4.5 to 1.0, indicating 
robust class differentiation. 

➢ DFL loss: Converged from 1.8 to 1.2, showing stable 
bounding box regression. 
 

Validation losses (Figure 2b): 
 

➢ Box loss: Reduced from 1.7 to 1.5, suggesting good 
generalization. 

➢ Classification loss: Fell from 2.5 to 1.2, improving 
class prediction accuracy. 

➢ DFL loss: Decreased from 1.55 to 1.3, maintaining 
regression consistency. 
 

Performance metrics (Figure 2c): 
 

➢ Precision: Rose from 0.1 to 0.7, minimizing false 
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positives. 

➢ Recall: Improved from 0.1 to 0.4, enhancing true 
positive detection. 

➢ mAP@0.5: Increased from 0.1 to 0.401, indicating 
overall detection improvement. 

➢ mAP@0.5:0.95: Grew from 0.05 to 0.253, showing 
robustness across IoU thresholds. 

 

Table I: Comparison with state-of-the-art methods. 
 

Method mAP@0.5 FPS 
Parameters 

(M) 

Two-Stream CNN [8] 0.45 10 120 

LRCN [12] 0.38 8 80 
Swin Transformer 

[15] 0.5 5 200 

YOLOv5 [7] 0.35 50 21 

YOLOv11 (Ours) 0.401 60 25 
 

Training stabilized after 200 epochs, with early 
stopping preventing overfitting as validation mAP@0.5 
plateaued. 

 

Testing results 
 

The model was evaluated on the test set (1,000 frames), 
yielding an overall mAP@0.5 of 0.401. Class-wise 
performance is detailed in Figure 3. Key observations: 

 
 

 
 

Figure 3: Class-wise performance: Number of 
instances (blue bars, left y-axis) and mAP@0.5 (red 
points, right y-axis) for each action class. 

➢ High performers: Patient on wheelchair (mAP@0.5: 
0.995), cleaning (0.760) and searching (0.695) showed 
excellent detection accuracy. 

➢ Low performers: Stretcher attendant, wheelchair 
attendant and checking bag had mAP@0.5 of 0.0 due to 
zero correct predictions, reflecting their absence or 
rarity in the test set. 

➢ Moderate performers: Standing (0.60) and walking 
(0.45) benefited from higher instance counts but 
showed room for improvement. 

 

The confusion matrix, shown in Figure 4, provides 
further insight into the model’s classification performance, 
highlighting frequent misclassifications such as sitting 
being predicted as standing. 

 
 

 
 

Figure 4: Confusion matrix showing predicted vs. 
true labels for the 18 action classes. 

 
 

Bounding box analysis 
 

Bounding box dimensions ranged from 20 to 300 pixels, 
with a peak at 50-200 pixels, aligning with medium-sized 
objects in 640×640 images. Small boxes (¡50 pixels) for 
actions like using phone had lower detection rates, 
indicating a limitation in small object detection. 

 

Precision-recall and F1-confidence curves 
 
Precision-recall curves showed high AUC for patient on 

wheelchair (0.98) and cleaning (0.85), while checking bag 
had no detections. Figure 5 illustrates the precision recall 
curves for selected classes. 
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Figure 5: Precision-recall curves for selected action 
classes: Patient on wheelchair, cleaning and searching. 

 
 

The F1-confidence curve peaked at 0.52 (confidence: 
0.4), balancing precision (0.7) and recall (0.4), as shown in 
Figure 6. 

 
 

 
 

Figure 6: F1-confidence curve, peaking at an F1-score 
of 0.52 at a confidence threshold of 0.4. 

 
 

Qualitative results 
 

Testing on unseen frames demonstrated robustness in 
detecting cleaning and patient on wheelchair despite 
fisheye distortion. Misclassifications (e.g., sitting as 
standing) occurred with partial occlusions. Figure 7 shows 
sample detections, including both successful and incorrect 
predictions. 
 
 

 
  
Figure 7: Qualitative results showing successful 

detections and misclassifications on unseen test 
frames. A: Successful detection of cleaning. B: 
Successful detection of patient on wheelchair. C: 
Misclassification: Sitting predicted as standing. D: 
Failure to detect using phone due to small object size. 

 
 

Action class. 
 

Comparison with state-of-the-art 
 

Table I compares YOLOv11 with other methods on our 
test set. 

 

YOLOv11 offers a superior balance of accuracy and 
speed, outperforming YOLOv5 and competing with heavier 
models like Swin transformer. 

 

Limitations 
 

The model struggles with rare classes and small 
objects, exacerbated by dataset imbalance and fisheye 
distortion effects near image edges. 

 

Conclusion 
 

This study validates YOLOv11 as an effective HAR 
solution, achieving an mAP@0.5 of 0.401 and 60 FPS on a 
diverse 18-class dataset. Future work will address 
imbalance with synthetic data, enhance small object 
detection and incorporate temporal modeling. 
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